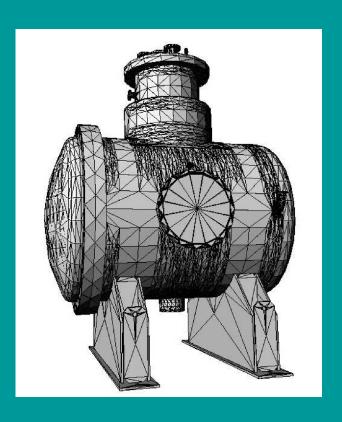


Overview of the Experiment


- ArgoNeuT is the first Liquid Argon TPC (LArTPC) to go in a "low energy" neutrino beam (NuMI on-axis, peaking at ~3GeV). The first neutrino events are expected next month.
- We will see ~45000 neutrino events in the 170L TPC in ~180 days (Phase 1) of running.
- Goals:
 - Research and Design for future LArTPCs (MicroBooNE, long baseline neutrino oscillation, proton decay, ...)
 - Argon purity, cold electronics, detector design and construction, etc.
 - Simulation and reconstruction framework
 - Demonstrate particle ID (e.g. electron/gamma separation) capabilities of LArTPCs with dE/dx
 - Physics?

ArgoNeuT Collaboration

F. Cavanna
University of L'Aquila

B. Baller, C. James, G. Rameika
Fermi National Accelerator Laboratory

M. Antonello, R. Dimaggio, O. Palamara

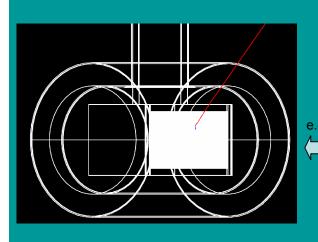
<u>Gran Sasso National Laboratory</u>

C. Bromberg, D. Edmunds, P. Laurens, B. Page Michigan State University

F. Pietropaolo
<u>University of Padova</u>

S. Kopp, K. Lang
The University of Texas at Austin

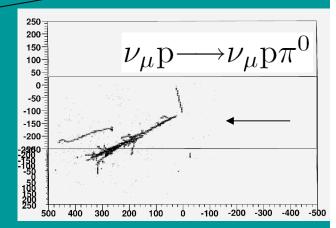
C. Anderson, B. Fleming*, S. Linden, M. Soderberg, J. Spitz Yale University


The Monte Carlo tree

gnumi near detector flux

CRY cosmic ray generator

GENIE neutrino generator (modified for LAr)


Nuance neutrino generator (modified for LAr)

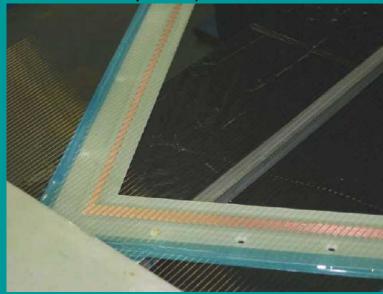
Event initial conditions

ArgoNeuT Geant4

Event

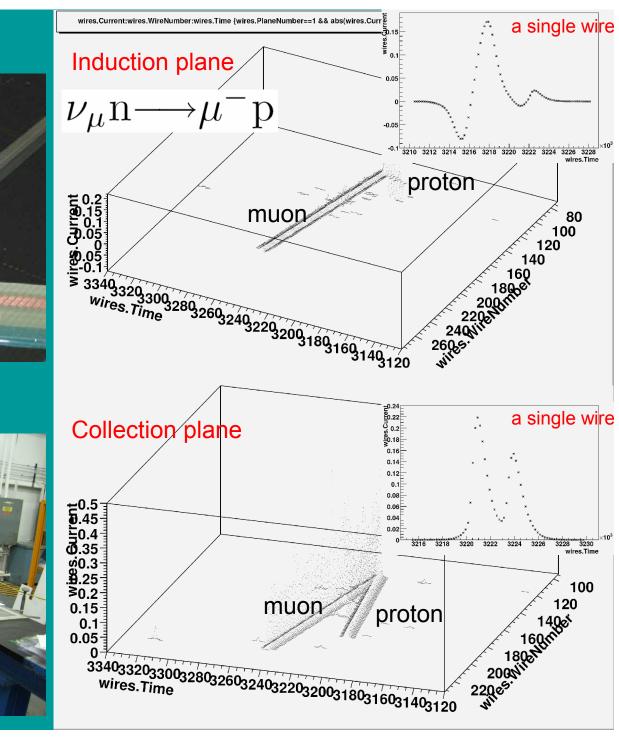
MC Steps

Interaction product info Particle ID Energy Momentum vector

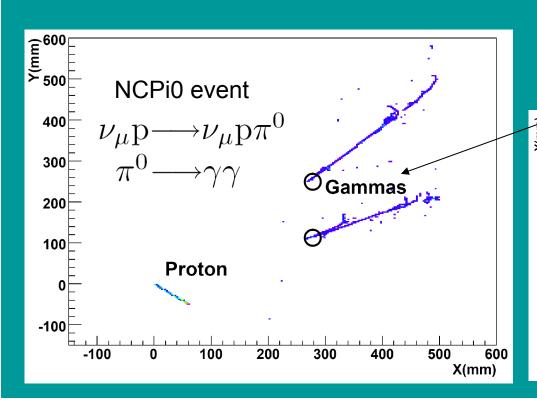

MC Truth

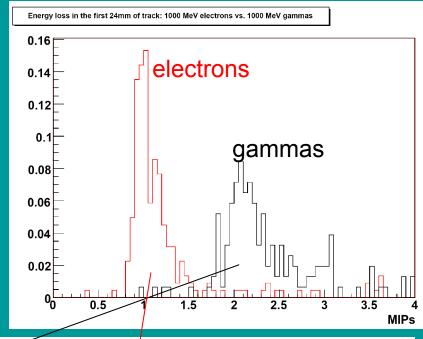
Initial neutrino info Energy Momentum vector Hits->Digits->Wires

Wire # (position)
Charge (energy deposit)
Time



4 mm wire spacing (260 channels/plane)

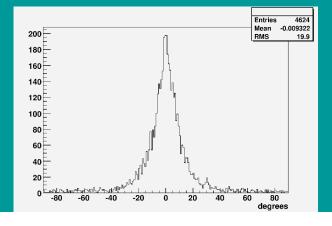

The TPC

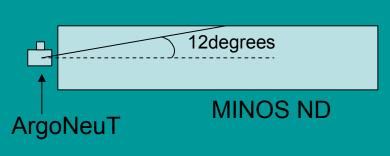




Particle tagging with dE/dx

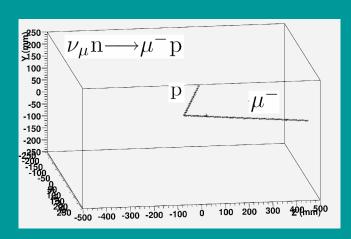
- ArgoNeuT will demonstrate the LArTPC's ability to ID particles with dE/dx and topology.
- Monte Carlo studies indicate that LArTPCs can separate electron/gamma events with ~90% efficiency.

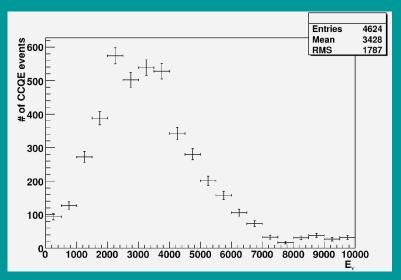

Event rates


Phase 1

Note that ArgoNeuT will move in front of MINERvA for phase 2 and run for xxx days

Event type	# of events in 180 days	Notes
$\nu_{\mu} \text{ CC}$	28800	
$\overline{ u}_{\mu} \ \mathrm{CC}$	2520	
ν_e CC	540	Use dE/dx to tag electron
NC	9720	
$\nu_{\mu} n \longrightarrow \mu^{-} p \text{ (CCQE)}$	4680	$\sim 50\%$ proton containment. Will use MINOS ND for
		muons. Cross-section? M_A ?
$\nu_{\mu} N \longrightarrow \nu_{\mu} N \text{ (NCE)}$	1420	$\sim 50\%$ proton containment. Separating neutron and
		proton events? Cross-section? Δ_s ?
$\nu_{\mu} N \longrightarrow \mu^{-} N \pi^{+} (CCpi+)$	5490	Use dE/dx and topology to tag this channel
		(CCQE background)
$\nu_{\mu} n \longrightarrow \mu^{-} p \pi^{0} \text{ (CCpi0)}$	1850	Use dE/dx and topology to tag this channel
		(CCQE background)
$\nu_{\mu} N \longrightarrow \nu_{\mu} N \pi^{0} \text{ (NCpi0)}$	1370	Low event containment (rad length in Argon is 14 cm).
		Use dE/dx and topology to tag gamma


Muon angle with respect to beam axis



Physics?

- As a very small detector, ArgoNeuT will not be good at containing events. However, using dE/dx and LArTPC resolution, ArgoNeuT will be able to identify and separate event-types with high efficiency.
- How can we use this to our advantage?
 - CCQE events in ArgoNeuT may provide a measurement of the axial vector mass (M_A).
 - Backgrounds (CC1pi+,CC1pi0, etc.) will be tagged with high efficiency
 - We will use MINOS to catch muons and may be able to make a CCQE cross-section measurement on argon (which will help with M_{Δ}).

~4600 CCQE events in 180 days of running

– △_s measurement?

$$rac{
u p o
u p}{
u n o
u n}$$
 or $rac{
u p o
u p}{
u \mu n o
u^- p}$ or $rac{
u p o
u p}{
u p}$ cross section

How well can we distinguish protons from neutrons in an LArTPC?

Take home

- ArgoNeuT is an R&D-oriented LArTPC that will begin taking data in the NUMI beamline next month.
- The detector will see >45000 neutrino events in a wide variety of channels.
- Measurements of CCQE and NC-elastic cross sections on LAr are ambitious but possible.
- The LArTPC's ability to image neutrino events with high resolution and tag with high efficiency will be demonstrated.

R&D on the road to CP violation, ⊕₁₃, proton decay, ...